0%

클로저

클로저

함수 객체의 내부 슬롯 [[Environment]]

렉스컬 스코프가 가능하려면 함수는 자신이 정의된 환경, 즉 상위 스코프를 기억해야 한다. 따라서 함수는 자신의 내부 슬록 [[Environment]]에 자신이 정의된 상위 스코프의 참조를 저장한다.

함수 객체를 생성할 때 [[Environment]]에 저장되는 상위 스코프의 참조는 현재 실행 중인 실행 컨텍스트의 렉시컬 환경을 가리킨다. 이유는 함수 정의가 평가되어 함수 객체를 생성하는 시점은 정의된 함수의 상위 함수(또는 전역 코드)가 평가 또는 실행되고 있는 시점이며 현재 실행 중인 실행 컨텍스트는 상위 함수(또는 전역코드)의 실행 컨텍스트이기 때문이다.

함수 객체의 내부 슬롯 [[Environment]]에 저장된 현재 실행 중인 실행 컨텍스트의 렉시컬 환경의 참조가 바로 상위 스코프다. 또한 자신이 호출되었을 때 생성될 함수 렉시컬 환경의 “외부 렉시컬 환경에 대한 참조”에 저장될 참조값이다. 함수 객체는 내부 슬롯 [[Environment]]에 저장한 렉시컬 환경의 참조, 즉 상위 스코프를 자신이 존재하는 한 기억한다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
const x = 1;

function foo() {
const x = 10;

// 상위 스코프는 함수 정의 환경(위치)에 따라 결정된다.
// 함수 호출 위치와 상위 스코프는 아무런 관계가 없다.
bar();
}

// 함수 bar는 자신의 상위 스코프, 즉 전역 렉시컬 환경을 [[Environment]]에 저장하여 기억한다.
function bar() {
console.log(x);
}

foo(); // 1
bar(); // 1
1
2
3
4
5
1. 함수 실행 컨텍스트 생성
2. 함수 렉시컬 환경 생성
2.1. 함수 환경 레코드 생성
2.2. this 바인딩
2.3. 외부 렉시컬 환경에 대한 참조 결정

함수 렉시컬 환경의 구성 요소인 외부 렉시컬 환경에 대한 참조에는 함수 객체의 내부 슬롯 [[Environment]]에 저장된 렉시컬 환경의 참조가 할당된다. 이것이 렉시컬 스코프의 실체이다.

클로저와 렉시컬 환경

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
const x = 1;

// ①
function outer() {
const x = 10;
const inner = function () {
console.log(x);
}; // ②
return inner;
}

// outer 함수를 호출하면 중첩 함수 inner를 반환한다.
// 그리고 outer 함수의 실행 컨텍스트는 실행 컨텍스트 스택에서 팝되어 제거된다.
const innerFunc = outer(); // ③
innerFunc(); // ④ 10

outer 함수를 호출(③)하면 outer 함수는 중첩 함수 inner를 반환하고 outer 함수는 실행 컨텍스트 스택에서 제거(pop)되며 생명 주기(life cycle)를 마감한다. 이때 outer 함수의 지역 변수 x와 변수 값 10을 저장하고 있던 outer 함수의 실행 컨텍스트가 제거되었으므로 outer 함수의 지역 변수 x 또한 생명 주기를 마감한다. 따라서 outer 함수의 지역 변수 x는 더는 유효하지 않게 되어 x 변수에 접근할 수 있는 방법은 달리 없어 보인다.

그러나 위 코드의 실행 결과(④)는 outer 함수의 지역 변수 x의 값인 10이다. 이미 생명 주기가 종료되어 실행 컨텍스트 스택에서 제거된 outer 함수의 지역 변수 x가 다시 부활이라도 한 듯이 동작하고 있다.

이처럼 자신을 포함하고 있는 외부 함수보다 중첩 함수가 더 오래 유지되는 경우 외부 함수 밖에서 중첩 함수를 호출하더라도 외부 함수의 지역 변수에 접근할 수 있는데 이러한 함수를 클로저(closure)라고 부른다.

자바스크립트의 모든 함수는 자신의 상위 스코프를 기억하는 상위 스코프의 식별자를 참조할 수 있으며 식별자에 바인딩된 값을 변경할 수도 있다.
위 예제에서 inner 함수는 자신이 평가될 때 자신이 정의된 위치에 의해 결정된 상위 스코프를 [[Environment]] 내부 슬롯에 저장한다. 이때 저장된 상위 스코프는 함수가 존재하는 한 유지된다.

outer 함수의 실행 컨텍스트는 실행 컨텍스트 스택에서 제거되지만 outer 함수의 렉시컬 환경까지 소멸하는 것은 아니다.

outer 함수의 렉시컬 환경은 inner 함수의 [[Environment]] 내부 슬롯에 의해 참조되고 있고 inner 함수는 전역 변수 innerFunc에 의해 참조되고 있으므로 가비지 컬렉션의 대상이 되지 않기 때문이다.

하지만 중첩 함수가 외부 함수보다 더 오래 유지되어도 상위 스코프의 어떤 식별자도 참조하지 않으면 대부분의 모던 브라우저에서 최적화를 통해 중첩 함수는 상위 스코프를 기억하지 않으며 그 외부 함수는 클로저라고 할 수 없다.
또는 중첩 함수가 상위 스코프의 식별자를 참조하지만 외부 함수보다 중첩 함수가 생명주기가 짧은 경우에도 일반적으로 클로저라고 하지 않는다.
클로저는 중첩 함수가 상위 스코프의 식별자를 참조하고 있고 중첩 함수가 외부 함수보다 더 오래 유지되는 경우에 한정하는 것이 일반적이다.

클로저에 의해 참조되는 상위 스코프의 변수를 자유 변수(free variable)라고 부른다. 클로저(closure)란 “함수가 자유 변수에 대해 닫혀있다(closed)”라는 의미다. 이를 좀 더 알기 쉽게 의역하자면 “자유 변수에 묶여있는 함수”라고 할 수 있다.

클로저의 활용

클로저는 상태(state)를 안전하게 변경하고 유지하기 위해 사용한다. 다시 말해, 상태가 의도치 않게 변경되지 않도록 상태를 안전하게 은닉(information hiding)하고 특정 함수에게만 상태 변경을 허용하기 위해 사용한다.

1
2
3
4
5
6
7
8
9
10
11
12
// 카운트 상태 변수
let num = 0;

// 카운트 상태 변경 함수
const increase = function () {
// 카운트 상태를 1만큼 증가 시킨다.
return ++num;
};

console.log(increase()); // 1
console.log(increase()); // 2
console.log(increase()); // 3

위 코드는 잘 동작하지만 오류를 발생시킬 가능성을 내포하고 있는 좋지 않은 코드다. 그 이유는 위 예제가 바르게 동작하려면 다음의 전제 조건이 지켜져야 하기 때문이다.

  1. 카운트 상태(num 변수의 값)는 increase 함수가 호출되기 전까지 변경되지 않고 유지되어야 한다.
  2. 이를 위해 카운트 상태(num 변수의 값)는 increase 함수만이 변경할 수 있어야 한다.

하지만 카운트 상태는 전역 변수를 통해 관리되고 있기 때문에 언제든지 누구나 접근할 수 있고 변경할 수 있다.
따라서 카운트 상태를 안전하게 변경하고 유지하기 위해서는 increase 함수만이 num 변수를 참조하고 변경할 수 있게 하는 것이 바람직하다.

1
2
3
4
5
6
7
8
9
10
11
12
13
// 카운트 상태 변경 함수
const increase = function () {
// 카운트 상태 변수
let num = 0;

// 카운트 상태를 1만큼 증가 시킨다.
return ++num;
};

// 이전 상태를 유지하지 못한다.
console.log(increase()); // 1
console.log(increase()); // 1
console.log(increase()); // 1

전역 변수 num을 increase 함수의 지역 변수로 변경하여 의도치 않은 상태 변경은 방지했다. 하지만 increase 함수가 호출될 때마다 지역 변수 num은 다시 선언되고 0으로 초기화되기 때문에 출력 결과는 언제나 1이다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 카운트 상태 변경 함수
const increase = (function () {
// 카운트 상태 변수
let num = 0;

// 클로저
return function () {
// 카운트 상태를 1만큼 증가 시킨다.
return ++num;
};
})();

console.log(increase()); // 1
console.log(increase()); // 2
console.log(increase()); // 3

즉시 실행 함수가 호출되고 즉시 실행 함수가 반환한 함수가 increase 변수에 할당된다. increase 변수에 할당된 함수는 자신이 정의된 위치에 의해 결정된 상위 스코프인 즉시 실행 함수의 렉시컬 환경을 기억하는 클로저다.

즉시 실행 함수는 호출된 이후 소멸되지만 즉시 실행 함수가 반환한 클로저는 변수 increase에 할당되어 호출된다. 이때 즉시 실행 함수가 반환한 클로저는 자신이 정의된 위치에 의해 결정된 상위 스코프인 즉시 실행 함수의 렉시컬 환경을 기억하고 있다. 따라서 즉시 실행 함수가 반환한 클로저는 카운트 상태를 유지하기 위한 자유 변수 num을 언제 어디서 호출하든지 참조하고 변경할 수 있다.
이처럼 클로저는 상태(state)가 의도치 않게 변경되지 않도록 안전하게 은닉(information hiding)하고 특정 함수에게만 상태 변경을 허용하여 상태를 안전하게 변경하고 유지하기 위해 사용한다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
const counter = (function () {
// 카운트 상태 변수
let num = 0;

// 클로저인 메서드를 갖는 객체를 반환한다.
// 객체 리터럴은 스코프를 만들지 않는다.
// 따라서 아래 메서드들의 상위 스코프는 즉시 실행 함수의 렉시컬 환경이다.
return {
// num: 0, // 프로퍼티는 public하므로 은닉되지 않는다.
increase() {
return ++num;
},
decrease() {
return num > 0 ? --num : 0;
},
};
})();

console.log(counter.increase()); // 1
console.log(counter.increase()); // 2

console.log(counter.decrease()); // 1
console.log(counter.decrease()); // 0

위 예제에서 즉시 실행 함수가 반환하는 객체 리터럴은 즉시 실행 함수의 실행 단계에서 평가되어 객체가 된다. 이때 객체의 메서드도 함수 객체로 생성된다. 객체 리터럴의 중괄호는 코드 블록이 아니므로 별도의 스코프를 생성하지 않는다.

위 예제의 increase, decrease 메서드의 상위 스코프는 increase, decrease 메서드가 평가되는 시점에 실행 중인 실행 컨텍스트인 즉시 실행 함수 실행 컨텍스트의 렉시컬 환경이다. 따라서 increase, decrease 메서드가 언제 어디서 호출되든 상관없이 increase, decrease 함수는 즉시 실행 함수의 스코프의 식별자를 참조할 수 있다.

위 예제를 생성자 함수로 표현하면 다음과 같다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
const Counter = (function () {
// ① 카운트 상태 변수
let num = 0;

function Counter() {
// this.num = 0; // ② 프로퍼티는 public하므로 은닉되지 않는다.
}

Counter.prototype.increase = function () {
return ++num;
};

Counter.prototype.decrease = function () {
return num > 0 ? --num : 0;
};

return Counter;
})();

const counter = new Counter();

console.log(counter.increase()); // 1
console.log(counter.increase()); // 2

console.log(counter.decrease()); // 1
console.log(counter.decrease()); // 0

즉시 실행 함수 내에서 선언된 num 변수는 인스턴스를 통해 접근할 수 없으며, 즉시 실행 함수 외부에서도 접근할 수 없는 은닉된 변수다.

생성자 함수 Counter는 프로토타입을 통해 increase, decrease 메서드를 상속받는 인스턴스를 생성한다. increase, decrease 메서드는 모두 자신의 함수 정의가 평가되어 함수 객체가 될 때 실행 중인 실행 컨텍스트인 즉시 실행 함수 실행 컨텍스트의 렉시컬 환경을 기억하는 클로저다. 따라서 프로토타입을 통해 상속되는 프로토타입 메서드일지라도 즉시 실행 함수의 자유 변수 num을 참조할 수 있다. 다시 말해, num 변수의 값은 increase, decrease 메서드만이 변경할 수 있다.

외부 상태 변경이나 가변(mutable) 데이터를 피하고 불변성(immutability)을 지향하는 함수형 프로그래밍에서 부수 효과를 최대한 억제하여 오류를 피하고 프로그램의 안정성을 높이기 위해 클로저는 적극적으로 사용된다.

다음은 함수형 프로그래밍에서 클로저를 활용하는 간단한 예제다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
// 함수를 인수로 전달받고 함수를 반환하는 고차 함수
// 이 함수는 카운트 상태를 유지하기 위한 자유 변수 counter를 기억하는 클로저를 반환한다.
function makeCounter(predicate) {
// 카운트 상태를 유지하기 위한 자유 변수
let counter = 0;

// 클로저를 반환
return function () {
// 인수로 전달 받은 보조 함수에 상태 변경을 위임한다.
counter = predicate(counter);
return counter;
};
}

// 보조 함수
function increase(n) {
return ++n;
}

// 보조 함수
function decrease(n) {
return --n;
}

// 함수로 함수를 생성한다.
// makeCounter 함수는 보조 함수를 인수로 전달받아 함수를 반환한다
const increaser = makeCounter(increase); // ①
console.log(increaser()); // 1
console.log(increaser()); // 2

// increaser 함수와는 별개의 독립된 렉시컬 환경을 갖기 때문에 카운터 상태가 연동하지 않는다.
const decreaser = makeCounter(decrease); // ②
console.log(decreaser()); // -1
console.log(decreaser()); // -2

주의해야 할 것은 makeCounter 함수를 호출해 함수를 반환할 때 반환된 함수는 자신만의 독립된 렉시컬 환경을 갖는다는 것이다. 이는 함수를 호출하면 그때마다 새로운 makeCounter 함수 실행 컨텍스트의 렉시컬 환경이 생성되기 때문이다.
위 예제에서 전역 변수 increaser와 decreaser에 할당된 함수는 각각 자신만의 독립된 렉시컬 환경을 갖기 때문에 카운트를 유지하기 위한 자유 변수 counter를 공유하지 않아 카운터의 증감이 연동되지 않는다. 따라서 독립된 카운터가 아니라 연동하여 증감이 가능한 카운터를 만들려면 렉시컬 환경을 공유하는 클로저를 만들어야 한다. 이를 위해서는 makeCounter 함수를 두 번 호출하지 말아야 한다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// 함수를 반환하는 고차 함수
// 이 함수는 카운트 상태를 유지하기 위한 자유 변수 counter를 기억하는 클로저를 반환한다.
const counter = (function () {
// 카운트 상태를 유지하기 위한 자유 변수
let counter = 0;

// 함수를 인수로 전달받는 클로저를 반환
return function (predicate) {
// 인수로 전달 받은 보조 함수에 상태 변경을 위임한다.
counter = predicate(counter);
return counter;
};
})();

// 보조 함수
function increase(n) {
return ++n;
}

// 보조 함수
function decrease(n) {
return --n;
}

// 보조 함수를 전달하여 호출
console.log(counter(increase)); // 1
console.log(counter(increase)); // 2

// 자유 변수를 공유한다.
console.log(counter(decrease)); // 1
console.log(counter(decrease)); // 0

캡슐화와 정보 은닉

캡슐화(encapsulation)는 객체의 상태(state)를 나타내는 프로퍼티와 프로퍼티를 참조하고 조작할 수 있는 동작(behavior)인 메서드를 하나로 묶는 것을 말한다. 캡슐화는 객체의 특정 프로퍼티나 메서드를 감출 목적으로 사용하기도 하는데 이를 정보 은닉(information hiding)이라 한다.

정보 은닉은 외부에 공개할 필요가 없는 구현의 일부를 외부에 공개되지 않도록 감추어 적절치 못한 접근으로부터 객체의 상태가 변경되는 것을 방지해 정보를 보호하고, 객체 간의 상호 의존성, 즉 결합도(coupling)를 낮추는 효과가 있다.

자바스크립트는 public, private, protected 같은 접근 제한자를 제공하지 않는다. 따라서 자바스크립트 객체의 모든 프로퍼티와 메서드는 기본적으로 외부에 공개되어 있다. 즉, 객체의 모든 프로퍼티와 메서드는 기본적으로 public하다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
function Person(name, age) {
this.name = name; // public
let _age = age; // private

// 인스턴스 메서드
this.sayHi = function () {
console.log(`Hi! My name is ${this.name}. I am ${_age}.`);
};
}

const me = new Person("Lee", 20);
me.sayHi(); // Hi! My name is Lee. I am 20.
console.log(me.name); // Lee
console.log(me._age); // undefined

const you = new Person("Kim", 30);
you.sayHi(); // Hi! My name is Kim. I am 30.
console.log(you.name); // Kim
console.log(you._age); // undefined

_age 변수는 Person 생성자 함수의 지역 변수이므로 Person 생성자 함수 외부에서 참조하거나 변경할 수 없다. 즉, _age 변수는 private하다.

sayHi 메서드를 프로토타입 메서드로 변경하여 sayHi 메서드의 중복 생성을 방지해 보자.

1
2
3
4
5
6
7
8
9
10
function Person(name, age) {
this.name = name; // public
let _age = age; // private
}

// 프로토타입 메서드
Person.prototype.sayHi = function () {
// Person 생성자 함수의 지역 변수 _age를 참조할 수 없다
console.log(`Hi! My name is ${this.name}. I am ${_age}.`);
};

Person.prototype.sayHi 메서드 내에서 Person 생성자 함수의 지역 변수 _age를 참조할 수 없는 문제가 발생한다. 따라서 다음과 같이 즉시 실행 함수를 사용하여 Person 생성자 함수와 Person.prototype.sayHi 메서드를 하나의 함수 내에 모아 보자.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
const Person = (function () {
let _age = 0; // private

// 생성자 함수
function Person(name, age) {
this.name = name; // public
_age = age;
}

// 프로토타입 메서드
Person.prototype.sayHi = function () {
console.log(`Hi! My name is ${this.name}. I am ${_age}.`);
};

// 생성자 함수를 반환
return Person;
})();

const me = new Person("Lee", 20);
me.sayHi(); // Hi! My name is Lee. I am 20.
console.log(me.name); // Lee
console.log(me._age); // undefined

const you = new Person("Kim", 30);
you.sayHi(); // Hi! My name is Kim. I am 30.
console.log(you.name); // Kim
console.log(you._age); // undefined

정보 은닉이 가능한 것처럼 보인다. 즉시 실행 함수가 반환하는 Person 생성자 함수와 Person 생성자 함수의 인스턴스가 상속받아 호출할 Person.prototype.sayHi 메서드는 즉시 실행 함수가 종료된 이후 호출된다. 하지만 Person 생성자 함수와 sayHi 메서드는 이미 종료되어 소멸한 즉시 실행 함수의 지역 변수 _age를 참조할 수 있는 클로저다.

하지만 위 코드도 문제가 있다. Person 생성자 함수가 여러 개의 인스턴스를 생성할 경우 다음과 같이 _age 변수의 상태가 유지되지 않는다는 것이다.

1
2
3
4
5
6
7
8
const me = new Person("Lee", 20);
me.sayHi(); // Hi! My name is Lee. I am 20.

const you = new Person("Kim", 30);
you.sayHi(); // Hi! My name is Kim. I am 30.

// _age 변수 값이 변경된다!
me.sayHi(); // Hi! My name is Kim. I am 30.

이는 Person.prototype.sayHi 메서드가 단 한번 생성되는 클로저이기 때문에 발생하는 현상이다. Person.prototype.sayHi 메서드는 즉시 실행 함수가 호출될 때 생성된다. 이때 Person.prototype.sayHi 메서드는 자신의 상위 스코프인 즉시 실행 함수의 실행 컨텍스트의 렉시컬 환경의 참조를 [[Environment]]에 저장하여 기억한다. 따라서 Person 생성자 함수의 모든 인스턴스가 상속을 통해 호출할 수 있는 Person.prototype.sayHi 메서드의 상위 스코프는 어떤 인스턴스로 호출하더라도 하나의 동일한 상위 스코프를 사용하게 된다. 이러한 이유로 Person 생성자 함수가 여러 개의 인스턴스를 생성할 경우 위와 같이 _age 변수의 상태가 유지되지 않는다.

이처럼 자바스크립트는 정보 은닉을 완전하게 지원하지 않는다. 인스턴스 메서드를 사용한다면 자유 변수를 통해 private을 흉내 낼 수는 있지만 프로토타입 메서드를 사용하면 이마저도 불가능해진다. 다행히도 2020년 7월 현재, TC39 프로세스의 stage 3(candidate)에는 클래스에 private 필드를 정의할 수 있는 새로운 표준 사양이 제안되어 있다. 표준 사양으로 승급이 확실시되는 이 제안은 현재 최신 브라우저(Chrome 74 이상)와 최신 Node.js(버전 12 이상)에 이미 구현되어 있다.

자주 발생하는 실수

1
2
3
4
5
6
7
8
9
10
11
var funcs = [];

for (var i = 0; i < 3; i++) {
funcs[i] = function () {
return i;
}; // ①
}

for (var j = 0; j < funcs.length; j++) {
console.log(funcs[j]()); // ②
}

funcs 배열의 요소로 추가된 3개의 함수가 0, 1, 2를 반환할 것으로 기대했다면 아쉽지만 결과는 그렇지 않다. 전역 변수 i에는 0, 1, 2가 순차적으로 할당된다. 따라서 funcs 배열의 요소로 추가한 함수를 호출하면 전역 변수 i를 참조하여 i의 값 3이 출력된다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
var funcs = [];

for (var i = 0; i < 3; i++) {
console.log("전: " + i);

funcs[i] = function () {
return i;
}; // ①

console.log("후: " + i);

console.log(funcs);

console.log("배열 내부: " + funcs + "\n");
}

console.log("마지막 i: " + i);

for (var j = 0; j < funcs.length; j++) {
console.log(funcs[j]()); // ②
console.log(funcs[j]);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
전: 0
후: 0
[ [Function] ]
배열 내부: function () { return i;}

전: 1
후: 1
[ [Function], [Function] ]
배열 내부: function () { return i;},function () { return i;}

전: 2
후: 2
[ [Function], [Function], [Function] ]
배열 내부: function () { return i;},function () { return i;},function () { return i;}

마지막 i: 3
3
[Function]
3
[Function]
3
[Function]

배열에 들어가는 값은 i를 return하는 함수이기 때문이다.

클로저를 사용해 위 예제를 바르게 동작하는 코드로 만들어보자.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
var funcs = [];

for (var i = 0; i < 3; i++) {
funcs[i] = (function (id) {
// ①
return function () {
return id;
};
})(i);
}

for (var j = 0; j < funcs.length; j++) {
console.log(funcs[j]());
}

즉시 실행 함수는 전역 변수 i에 현재 할당되어 있는 값을 인수로 전달받아 매개변수 id에 할당한 후 중첩 함수를 반환하고 종료된다. 즉시 실행 함수가 반환한 함수는 funcs 배열에 순차적으로 저장된다.
이때 즉시 실행 함수의 매개변수 id는 즉시 실행 함수가 반환한 중첩 함수의 상위 스코프에 존재한다. 즉시 실행 함수가 반환한 중첩 함수는 자신의 상위 스코프(즉시 실행 함수의 렉시컬 환경)를 기억하는 클로저이고, 매개변수 id는 즉시 실행 함수가 반환한 중첩 함수에 묶여있는 자유 변수가 되어 그 값이 유지된다.

위 예제는 자바스크립트의 함수 레벨 스코프 특성으로 인해 for 문의 초기화 문에서 var 키워드로 선언한 변수가 전역 변수가 되기 때문에 발생하는 현상이다. ES6의 let 키워드를 사용하면 이와 같은 번거로움이 깔끔하게 해결된다.

1
2
3
4
5
6
7
8
9
10
11
const funcs = [];

for (let i = 0; i < 3; i++) {
funcs[i] = function () {
return i;
};
}

for (let i = 0; i < funcs.length; i++) {
console.log(funcs[i]()); // 0 1 2
}

for 문의 변수 선언문에서 let 키워드로 선언한 변수를 사용하면 for 문의 코드 블록이 반복 실행될 때마다 for 문 코드 블록의 새로운 렉시컬 환경이 생성된다. 만약 for 문의 코드 블록 내에서 정의한 함수가 있다면 이 함수의 상위 스코프는 for 문의 코드 블록이 반복 실행될 때마다 생성된 for 문 코드 블록의 새로운 렉시컬 환경이다.
이때 함수의 상위 스코프는 for 문의 코드 블록이 반복 실행될 때마다 식별자(for 문의 변수 선언문에서 선언한 초기화 변수 및 for 문의 코드 블록 내에서 선언한 지역 변수 등)의 값을 유지해야 한다. 이를 위해 for 문이 반복될 때마다 독립적인 렉시컬 환경을 생성하여 식별자의 값을 유지한다.

참고 도서: 모던 자바스크립트 Deep Dive

Nyong’s GitHub